

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

How to setup a development environment for PRoot?

This document provides instructions for preparing
a system for developing PRoot and CARE.

Docker

The following command will attempt to build an image for
each supported distribution:

make -C test check-test-docker.sh V=1

Vagrant

Note: this requires installing the vagrant-sshfs [https://github.com/dustymabe/vagrant-sshfs] plugin.

The following command will initialize a virtual machine for
each supported distribution:

for distro in alpine centos debian; do
 cd "test/vagrant/${distro}"
 vagrant up
done

How to make a release of PRoot?

This document summarizes checks that must be performed before
releasing PRoot or CARE.

Checks

	Sanity checks:

	All supported atchitectures and distributions
both with and without seccomp support enabled:

make -C test
make -C test memcheck
CFLAGS=-fsanitize=address LDFLAGS=-lasan
make -C test V=1 2>&1 | grep talloc

	Functional checks:

	No regressions must appear with respect to test/validation.mk
and to the configurations tested in the previous
release (git tag -l).

	Performance checks:

	The following command must not suffer from
unexpected performance regression:

time proot -R / perl -e 'system("/usr/bin/true") for (1..10000)'

where /usr/bin/true is a symlink to /bin/true.

	Static analysis: gcov/lcov and clang scan-build
must not report new issues. All shell scripts must pass shellcheck.

Static Binaries

The following commands will generate statically-linked binaries
which can be optionally distributed for each release:

make -C src clean loader.elf loader-m32.elf build.h
LDFLAGS="${LDFLAGS} -static" make -C src proot care

Documentation Update

	Update the doc/changelog.rst file.

	Update the release number in the doc/proot/manual.rst file.

	Generate the documentation:

make -C doc

	Regenerate the website:

SITE_DIR=../../proot-me.github.io
make -eC doc dist # relative to doc directory

How to report security vulnerabilities in PRoot?

This document provides instruction on privately
disclosing security vulnerabilities found in PRoot or CARE.

Vulnerabilities

Fortunately, there have yet to be any serious flaws
found in the PRoot / CARE source code.

Confidential Contacts

The developers below are to be contacted directly via encrypted email:

Lucas Ramage | ramage.lucas@protonmail.com | 0x5D804A8DCFE9DC63

CARE

Comprehensive Archiver for Reproducible Execution

	Date

	2023-05-13

	Version

	2.3.0

	Manual section

	1

Synopsis

care [option] … command

Description

CARE monitors the execution of the specified command to create an
archive that contains all the material required to re-execute it
in the same context. That way, the command will be reproducible
everywhere, even on Linux systems that are supposed to be not
compatible with the original Linux system. CARE is typically useful
to get reliable bug reports, demonstrations, artifact evaluation [http://www.artifact-eval.org],
tutorials, portable applications, minimal rootfs, file-system
coverage, …

By design, CARE does not record events at all. Instead, it archives
environment variables and accessed file-system components – before
modification – during the so-called initial execution. Then, to
reproduce this execution, the re-execute.sh script embedded into
the archive restores the environment variables and relaunches the
command confined into the saved file-system. That way, both initial
and reproduced executions should produce the same results as they
use the same context, assuming they do not rely on external events –
like key strokes or network packets – or that these external events
are replayed manually or automatically, using umockdev [https://github.com/martinpitt/umockdev] for instance.
That means it is possible to alter explicitly the reproduced
executions by changing content of the saved file-system, or by
replaying different external events.

Privacy

To ensure that no sensitive file can possibly leak into the archive,
CARE conceals recursively the content of $HOME and /tmp,
that is, they appear empty during the original execution. Although,
for consistency reasons, the content of $PWD is revealed even if
it is nested into the two previous paths.

As a consequence, a program executed under CARE may behave
unexpectedly because a required path is not accessible anymore. In
this case, such a path has to be revealed explicitly. For details,
see the options --concealed-path and --revealed-path, and the
file concealed-accesses.txt as well.

It is advised to inspect the archived content before sharing it.

Options

The command-line interface is composed of two parts: first CARE’s
options, then the command to launch. This section describes the
options supported by CARE, that is, the first part of its command-line
interface.

	-o path, --output=path

	Archive in path, its suffix specifies the format.

The suffix of path is used to select the archive format, it can
be one of the following:

	suffix

	comment

	/

	don’t archive, copy into the specified directory instead

	.tar

	most common archive format

	.cpio

	most portable archive format, it can archive sockets too

	?.gz

	most common compression format, but slow

	?.lzo

	fast compression format, but uncommon

	?.bin

	see Self-extracting format section

	?.?.bin

	see Self-extracting format section

	.bin

	see Self-extracting format section

	.raw

	recommended archive format, use care -x to extract

where “?” means the suffix must be combined with another one. For
examples: “.tar.lzo”, “.cpio.gz”, “.tar.bin”, “.cpio.lzo.bin”, …
If this option is not specified, the default output path is
care-<DATE>.bin or care-<DATE>.raw, depending on whether
CARE was built with self-extracting format support or not.

	-c path, --concealed-path=path

	Make path content appear empty during the original execution.

Some paths may contain sensitive data that should never be
archived. This is typically the case for most of the files in:

	$HOME

	/tmp

That’s why these directories are recursively concealed from the
original execution, unless the -d option is specified.
Concealed paths appear empty during the original execution, as a
consequence their original content can’t be accessed nor archived.

	-r path, --revealed-path=path

	Make path content accessible when nested in a concealed path.

Concealed paths might make the original execution with CARE behave
differently from an execution without CARE. For example, a lot of
No such file or directory errors might appear. The solution
is to reveal recursively any required paths that would be nested
into a concealed path. Note that $PWD is revealed, unless
the -d option is specified.

	-p path, --volatile-path=path

	Don’t archive path content, reuse actual path instead.

Some paths contain only communication means with programs that
can’t be monitored by CARE, like the kernel or a remote server.
Such paths are said volatile; they shouldn’t be archived,
instead they must be accessed from the actual rootfs during the
re-execution. This is typically the case for the following pseudo
file-systems, sockets, and authority files:

	/dev

	/proc

	/sys

	/run/shm

	/tmp/.X11-unix

	/tmp/.ICE-unix

	$XAUTHORITY

	$ICEAUTHORITY

	/var/run/dbus/system_bus_socket

	/var/tmp/kdecache-$LOGNAME

This is also typically the case for any other fifos or sockets.
These paths are considered volatile, unless the -d option is
specified.

	-e name, --volatile-env=name

	Don’t archive name env. variable, reuse actual value instead.

Some environment variables are used to communicate with programs
that can’t be monitored by CARE, like remote servers. Such
environment variables are said volatile; they shouldn’t be
archived, instead they must be accessed from the actual
environment during the re-execution. This is typically the case
for the following ones:

	DISPLAY

	http_proxy

	https_proxy

	ftp_proxy

	all_proxy

	HTTP_PROXY

	HTTPS_PROXY

	FTP_PROXY

	ALL_PROXY

	DBUS_SESSION_BUS_ADDRESS

	SESSION_MANAGER

	XDG_SESSION_COOKIE

These environment variables are considered volatile, unless the
-d option is specified.

	-m value, --max-archivable-size=value

	Set the maximum size of archivable files to value megabytes.

To keep the CPU time and the disk space used by the archiver
reasonable, files whose size exceeds value megabytes are
truncated down to 0 bytes. The default is 1GB, unless the -d
option is specified. A negative value means no limit.

	-d, --ignore-default-config

	Don’t use the default options.

	-x file, --extract=file

	Extract content of the archive file, then exit.

It is recommended to use this option to extract archives created
by CARE because most extracting tools – that are not based on
libarchive – are too limited to extract them correctly.

	-v value, --verbose=value

	Set the level of debug information to value.

The higher the integer value is, the more detailed debug
information is printed to the standard error stream. A negative
value makes CARE quiet except on fatal errors.

	-V, --version, --about

	Print version, copyright, license and contact, then exit.

	-h, --help, --usage

	Print the user manual, then exit.

Exit Status

If an internal error occurs, care returns a non-zero exit status,
otherwise it returns the exit status of the last terminated program.
When an error has occurred, the only way to know if it comes from the
last terminated program or from care itself is to have a look at
the error message.

Files

The output archive contains the following files:

	re-execute.sh

	start the re-execution of the initial command as originally
specified. It is also possible to specify an alternate command.
For example, assuming gcc was archived, it can be re-invoked
differently:

$./re-execute.sh gcc –version
gcc (Ubuntu/Linaro 4.5.2-8ubuntu4) 4.5.2

$ echo ‘int main(void) { return puts(“OK”); }’ > rootfs/foo.c
$./re-execute.sh gcc -Wall /foo.c
$ foo.c: In function “main”:
$ foo.c:1:1: warning: implicit declaration of function “puts”

	rootfs/

	directory where all the files used during the original execution
were archived, they will be required for the reproduced execution.

	proot

	virtualization tool invoked by re-execute.sh to confine the
reproduced execution into the rootfs. It also emulates the
missing kernel features if needed.

	concealed-accesses.txt

	list of accessed paths that were concealed during the original
execution. Its main purpose is to know what are the paths that
should be revealed if the the original execution didn’t go as
expected. It is absolutely useless for the reproduced execution.

Limitations

It’s not possible to use GDB, strace, or any programs based on
ptrace under CARE yet. This latter is also based on this syscall,
but the Linux kernel allows only one ptracer per process. This will
be fixed in a future version of CARE thanks to a ptrace emulator.

Example

In this example, Alice wants to report to Bob that the compilation of
PRoot v2.4 raises an unexpected warning:

alice$ make -C PRoot-2.4/src/

make: Entering directory `PRoot-2.4/src'
[...]
CC path/proc.o
./path/proc.c: In function 'readlink_proc':
./path/proc.c:132:3: warning: ignoring return value of 'strtol'
[...]

Technically, Alice uses Ubuntu 11.04 for x86, whereas Bob uses
Slackware 13.37 on x86_64. Both distros are supposed to be shipped
with GCC 4.5.2, however Bob is not able to reproduce this issue on his
system:

bob$ make -C PRoot-2.4/src/

make: Entering directory `PRoot-2.4/src'
[...]
CC path/proc.o
[...]

Since they don’t have much time to investigate this issue by iterating
between each other, they decide to use CARE. First, Alice prepends
care to her command:

alice$ care make -C PRoot-2.4/src/

care info: concealed path: $HOME
care info: concealed path: /tmp
care info: revealed path: $PWD
care info: --
make: Entering directory `PRoot-2.4/src'
[...]
CC path/proc.o
./path/proc.c: In function 'readlink_proc':
./path/proc.c:132:3: warning: ignoring return value of 'strtol'
[...]
care info: --
care info: Hints:
care info: - search for "conceal" in `care -h` if the execution didn't go as expected.
care info: - use `./care-130213072430.bin` to extract the output archive.

Then she sends the care-130213072430.bin file to Bob. Now, he
should be able to reproduce her issue on his system:

bob$./care-130213072430.bin
[...]
bob$./care-130213072430/re-execute.sh

make: Entering directory `PRoot-2.4/src'
[...]
CC path/proc.o
./path/proc.c: In function 'readlink_proc':
./path/proc.c:132:3: warning: ignoring return value of 'strtol'
[...]

So far so good! This compiler warning doesn’t make sense to Bob since
strtol is used there to check a string format; the return value is
useless, only the errno value matters. Further investigations are
required, so Bob re-execute Alice’s GCC differently to get more
details:

bob$./care-130213072430/re-execute.sh gcc --version

gcc (Ubuntu/Linaro 4.5.2-8ubuntu4) 4.5.2
Copyright (C) 2010 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The same invocation on his system returns something slightly
different:

bob$ gcc --version

gcc (GCC) 4.5.2
Copyright (C) 2010 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

This confirms that both GCC versions are the same, however Alice’s one
seems to have been modified by Ubuntu. Although, according to the web
page related to this Ubuntu package 1, no changes regarding
strtol were made. So Bob decides to search into the files coming
from Alice’s system, that is, the rootfs directory in the
archive:

bob$ grep -wIrl strtol ./care-130213072430/rootfs

care-130213072430/rootfs/usr/include/inttypes.h
care-130213072430/rootfs/usr/include/stdlib.h
[...]

Here, the file usr/include/stdlib.h contains a declaration of
strtol with the “warn unused result” attribute. On Ubuntu, this
file belongs to the EGLIBC package, and its related web page 2
shows that this attribute was actually wrongly introduced by the
official EGLIBC developers. Ultimately Bob should notify them in this
regard.

Thanks to CARE, Bob was able to reproduce the issue reported by Alice
without effort. For investigations purpose, he was able to re-execute
programs differently and to search into the relevant files.

	1

	https://launchpad.net/ubuntu/oneiric/+source/gcc-4.5/4.5.2-8ubuntu4

	2

	https://launchpad.net/ubuntu/+source/eglibc/2.13-0ubuntu13.2

Self-extracting format

The self-extracting format used by CARE starts with an extracting
program, followed by a regular archive, and it ends with a special
footer. This latter contains the signature “I_LOVE_PIZZA” followed by
the size of the embedded archive:

+------------------------+
| extracting program |
+------------------------+
| |
| embedded archive |
| |
+------------------------+
| uint8_t signature[13] |
| uint64_t archive_size | # big-endian
+------------------------+

The command care -x can be used against a self-extracting archive,
even if they were not build for the same architecture. For instance,
a self-extracting archive produced for ARM can be extracted with a
care program built for x86_64, and vice versa. It is also
possible to use external tools to extract the embedded archive, for
example:

$ care -o foo.tar.gz.bin /usr/bin/echo OK
[...]
OK
[...]

$ hexdump -C foo.tar.gz.bin | tail -3
0015b5b0 00 b0 2e 00 49 5f 4c 4f 56 45 5f 50 49 5a 5a 41 |....I_LOVE_PIZZA|
0015b5c0 00 00 00 00 00 00 12 b4 13 |.........|
0015b5c9

$ file_size=`stat -c %s foo.tar.gz.bin`
$ archive_size=$((16#12b413))
$ footer_size=21
$ skip=$(($file_size - $archive_size - $footer_size))

$ dd if=foo.tar.gz.bin of=foo.tar.gz bs=1 skip=$skip count=$archive_size
1225747+0 records in
1225747+0 records out
1225747 bytes (1.2 MB) copied, 2.99546 s, 409 kB/s

$ file foo.tar.gz
foo.tar.gz: gzip compressed data, from Unix

$ tar -tzf foo.tar.gz
foo/rootfs/usr/
[...]
foo/re-execute.sh
foo/README.txt
foo/proot

Downloads

CARE is heavily based on PRoot [https://proot-me.github.io], that’s why they are both hosted in
the same repository: https://github.com/proot-me/proot. Previous CARE releases were packaged at https://github.com/proot-me/proot-static-build/releases, however, that repository has since been archived. The latest builds can be found under the job artifacts for the GitLab CI/CD Pipelines [https://gitlab.com/proot/proot/pipelines] for each commit.

Colophon

Visit https://proot-me.github.io/care for help, bug reports, suggestions, patches, …
Copyright (C) 2023 PRoot Developers, licensed under GPL v2 or later.

 _____ ____ _____ ____
 / __/ __ | __ \ __|
/ /_/ | / __|
_____|__|__|__|______|

PRoot

chroot, mount --bind, and binfmt_misc without privilege/setup

	Date

	2023-05-13

	Version

	5.4.0

	Manual section

	1

Synopsis

proot [option] … [command]

Description

PRoot is a user-space implementation of chroot, mount --bind,
and binfmt_misc. This means that users don’t need any privileges
or setup to do things like using an arbitrary directory as the new
root filesystem, making files accessible somewhere else in the
filesystem hierarchy, or executing programs built for another CPU
architecture transparently through QEMU user-mode. Also, developers
can use PRoot as a generic Linux process instrumentation engine thanks
to its extension mechanism, see CARE [https://proot-me.github.io/care] for an example. Technically
PRoot relies on ptrace, an unprivileged system-call available in
every Linux kernel.

The new root file-system, a.k.a guest rootfs, typically contains a
Linux distribution. By default PRoot confines the execution of
programs to the guest rootfs only, however users can use the built-in
mount/bind mechanism to access files and directories from the actual
root file-system, a.k.a host rootfs, just as if they were part of
the guest rootfs.

When the guest Linux distribution is made for a CPU architecture
incompatible with the host one, PRoot uses the CPU emulator QEMU
user-mode to execute transparently guest programs. It’s a convenient
way to develop, to build, and to validate any guest Linux packages
seamlessly on users’ computer, just as if they were in a native
guest environment. That way all of the cross-compilation issues are
avoided.

PRoot can also mix the execution of host programs and the execution
of guest programs emulated by QEMU user-mode. This is useful to use
host equivalents of programs that are missing from the guest rootfs
and to speed up build-time by using cross-compilation tools or
CPU-independent programs, like interpreters.

It is worth noting that the guest kernel is never involved, regardless
of whether QEMU user-mode is used or not. Technically, when guest
programs perform access to system resources, PRoot translates their
requests before sending them to the host kernel. This means that
guest programs can use host resources (devices, network, …) just as
if they were “normal” host programs.

Options

The command-line interface is composed of two parts: first PRoot’s
options (optional), then the command to launch (/bin/sh if not
specified). This section describes the options supported by PRoot,
that is, the first part of its command-line interface.

Regular options

	-r path, --rootfs=path

	Use path as the new guest root file-system, default is /.

The specified path typically contains a Linux distribution where
all new programs will be confined. The default rootfs is /
when none is specified, this makes sense when the bind mechanism
is used to relocate host files and directories, see the -b
option and the Examples section for details.

It is recommended to use the -R or -S options instead.

	-b path, --bind=path, -m path, --mount=path

	Make the content of path accessible in the guest rootfs.

This option makes any file or directory of the host rootfs
accessible in the confined environment just as if it were part of
the guest rootfs. By default the host path is bound to the same
path in the guest rootfs but users can specify any other location
with the syntax: -b *host_path*:*guest_location*. If the
guest location is a symbolic link, it is dereferenced to ensure
the new content is accessible through all the symbolic links that
point to the overlaid content. In most cases this default
behavior shouldn’t be a problem, although it is possible to
explicitly not dereference the guest location by appending it the
! character: -b *host_path*:*guest_location!*.

	-q command, --qemu=command

	Execute guest programs through QEMU as specified by command.

Each time a guest program is going to be executed, PRoot inserts
the QEMU user-mode command in front of the initial request.
That way, guest programs actually run on a virtual guest CPU
emulated by QEMU user-mode. The native execution of host programs
is still effective and the whole host rootfs is bound to
/host-rootfs in the guest environment.

	-w path, --pwd=path, --cwd=path

	Set the initial working directory to path.

Some programs expect to be launched from a given directory but do
not perform any chdir by themselves. This option avoids the
need for running a shell and then entering the directory manually.

	-v value, --verbose=value

	Set the level of debug information to value.

The higher the integer value is, the more detailed debug
information is printed to the standard error stream. A negative
value makes PRoot quiet except on fatal errors.

	-V, --version, --about

	Print version, copyright, license and contact, then exit.

	-h, --help, --usage

	Print the version and the command-line usage, then exit.

Extension options

The following options enable built-in extensions. Technically
developers can add their own features to PRoot or use it as a Linux
process instrumentation engine thanks to its extension mechanism, see
the sources for further details.

	-k string, --kernel-release=string

	Make current kernel appear as kernel release string.

If a program is run on a kernel older than the one expected by its
GNU C library, the following error is reported: “FATAL: kernel too
old”. To be able to run such programs, PRoot can emulate some of
the features that are available in the kernel release specified by
string but that are missing in the current kernel.

	-0, --root-id

	Make current user appear as “root” and fake its privileges.

Some programs will refuse to work if they are not run with “root”
privileges, even if there is no technical reason for that. This
is typically the case with package managers. This option allows
users to bypass this kind of limitation by faking the user/group
identity, and by faking the success of some operations like
changing the ownership of files, changing the root directory to
/, … Note that this option is quite limited compared to
fakeroot.

	-i string, --change-id=string

	Make current user and group appear as string “uid:gid”.

This option makes the current user and group appear as uid and
gid. Likewise, files actually owned by the current user and
group appear as if they were owned by uid and gid instead.
Note that the -0 option is the same as -i 0:0.

	-p string, --port=string

	Map ports to others with the syntax as string “port_in:port_out …”.

This option makes PRoot intercept bind and connect system calls,
and change the port they use. The port map is specified
with the syntax: -b *port_in*:*port_out*. For example,
an application that runs a MySQL server binding to 5432 wants
to cohabit with other similar application, but doesn’t have an
option to change its port. PRoot can be used here to modify
this port: proot -p 5432:5433 myapplication. With this command,
the MySQL server will be bound to the port 5433.
This command can be repeated multiple times to map multiple ports.

	-n, --netcoop

	Activates the network cooperation mode.

This option makes PRoot intercept bind() system calls and
change the port they are binding to to 0. With this, the system will
allocate an available port. Each time this is done, a new entry is added
to the port mapping entries, so that corresponding connect() system calls
use the same resulting port.

Alias options

The following options are aliases for handy sets of options.

	-R path

	Alias: -r *path* + a couple of recommended -b.

Programs isolated in path, a guest rootfs, might still need to
access information about the host system, as it is illustrated in
the Examples section of the manual. These host information
are typically: user/group definition, network setup, run-time
information, users’ files, … On all Linux distributions, they
all lie in a couple of host files and directories that are
automatically bound by this option:

	/etc/host.conf

	/etc/hosts

	/etc/hosts.equiv

	/etc/mtab

	/etc/netgroup

	/etc/networks

	/etc/passwd

	/etc/group

	/etc/nsswitch.conf

	/etc/resolv.conf

	/etc/localtime

	/dev/

	/sys/

	/proc/

	/tmp/

	/run/

	/var/run/dbus/system_bus_socket

	$HOME

	path

	-S path

	Alias: -0 -r *path* + a couple of recommended -b.

This option is useful to safely create and install packages into
the guest rootfs. It is similar to the -R option except it
enables the -0 option and binds only the following minimal set
of paths to avoid unexpected changes on host files:

	/etc/host.conf

	/etc/hosts

	/etc/nsswitch.conf

	/etc/resolv.conf

	/dev/

	/sys/

	/proc/

	/tmp/

	/run/shm

	$HOME

	path

Exit Status

If an internal error occurs, proot returns a non-zero exit status,
otherwise it returns the exit status of the last terminated
program. When an error has occurred, the only way to know if it comes
from the last terminated program or from proot itself is to have a
look at the error message.

Files

PRoot reads links in /proc/<pid>/fd/ to support openat(2)-like
syscalls made by the guest programs.

Examples

In the following examples the directories /mnt/slackware-8.0 and
/mnt/armslack-12.2/ contain a Linux distribution respectively made
for x86 CPUs and ARM CPUs.

chroot equivalent

To execute a command inside a given Linux distribution, just give
proot the path to the guest rootfs followed by the desired
command. The example below executes the program cat to print the
content of a file:

proot -r /mnt/slackware-8.0/ cat /etc/motd

Welcome to Slackware Linux 8.0

The default command is /bin/sh when none is specified. Thus the
shortest way to confine an interactive shell and all its sub-programs
is:

proot -r /mnt/slackware-8.0/

$ cat /etc/motd
Welcome to Slackware Linux 8.0

mount --bind equivalent

The bind mechanism enables one to relocate files and directories. This is
typically useful to trick programs that perform access to hard-coded
locations, like some installation scripts:

proot -b /tmp/alternate_opt:/opt

$ cd to/sources
$ make install
[...]
install -m 755 prog "/opt/bin"
[...] # prog is installed in "/tmp/alternate_opt/bin" actually

As shown in this example, it is possible to bind over files not even
owned by the user. This can be used to overlay system configuration
files, for instance the DNS setting:

ls -l /etc/hosts
-rw-r--r-- 1 root root 675 Mar 4 2011 /etc/hosts

proot -b ~/alternate_hosts:/etc/hosts

$ echo '1.2.3.4 google.com' > /etc/hosts
$ resolveip google.com
IP address of google.com is 1.2.3.4
$ echo '5.6.7.8 google.com' > /etc/hosts
$ resolveip google.com
IP address of google.com is 5.6.7.8

Another example: on most Linux distributions /bin/sh is a symbolic
link to /bin/bash, whereas it points to /bin/dash on Debian
and Ubuntu. As a consequence a #!/bin/sh script tested with Bash
might not work with Dash. In this case, the binding mechanism of
PRoot can be used to set non-disruptively /bin/bash as the default
/bin/sh on these two Linux distributions:

proot -b /bin/bash:/bin/sh [...]

Because /bin/sh is initially a symbolic link to /bin/dash, the
content of /bin/bash is actually bound over this latter:

proot -b /bin/bash:/bin/sh

$ md5sum /bin/sh
089ed56cd74e63f461bef0fdfc2d159a /bin/sh
$ md5sum /bin/bash
089ed56cd74e63f461bef0fdfc2d159a /bin/bash
$ md5sum /bin/dash
089ed56cd74e63f461bef0fdfc2d159a /bin/dash

In most cases this shouldn’t be a problem, but it is still possible to
strictly bind /bin/bash over /bin/sh – without dereferencing
it – by specifying the ! character at the end:

proot -b '/bin/bash:/bin/sh!'

$ md5sum /bin/sh
089ed56cd74e63f461bef0fdfc2d159a /bin/sh
$ md5sum /bin/bash
089ed56cd74e63f461bef0fdfc2d159a /bin/bash
$ md5sum /bin/dash
c229085928dc19e8d9bd29fe88268504 /bin/dash

chroot + mount --bind equivalent

The two features above can be combined to make any file from the host
rootfs accessible in the confined environment just as if it were
initially part of the guest rootfs. It is sometimes required to run
programs that rely on some specific files:

proot -r /mnt/slackware-8.0/

$ ps -o tty,command
Error, do this: mount -t proc none /proc

works better with:

proot -r /mnt/slackware-8.0/ -b /proc

$ ps -o tty,command
TT COMMAND
? bash
? proot -b /proc /mnt/slackware-8.0/
? sh
? ps -o tty,command

Actually there’s a bunch of such specific files, that’s why PRoot
provides the option -R to bind automatically a pre-defined list of
recommended paths:

proot -R /mnt/slackware-8.0/

$ ps -o tty,command
TT COMMAND
pts/6 bash
pts/6 proot -R /mnt/slackware-8.0/
pts/6 sh
pts/6 ps -o tty,command

chroot + mount --bind + su equivalent

Some programs will not work correctly if they are not run by the
“root” user, this is typically the case with package managers. PRoot
can fake the root identity and its privileges when the -0 (zero)
option is specified:

proot -r /mnt/slackware-8.0/ -0

id
uid=0(root) gid=0(root) [...]

mkdir /tmp/foo
chmod a-rwx /tmp/foo
echo 'I bypass file-system permissions.' > /tmp/foo/bar
cat /tmp/foo/bar
I bypass file-system permissions.

This option is typically required to create or install packages into
the guest rootfs. Note it is not recommended to use the -R
option when installing packages since they may try to update bound
system files, like /etc/group. Instead, it is recommended to use
the -S option. This latter enables the -0 option and binds
only paths that are known to not be updated by packages:

proot -S /mnt/slackware-8.0/

installpkg perl.tgz
Installing package perl...

chroot + mount --bind + binfmt_misc equivalent

PRoot uses QEMU user-mode to execute programs built for a CPU
architecture incompatible with the host one. From users’
point-of-view, guest programs handled by QEMU user-mode are executed
transparently, that is, just like host programs. To enable this
feature users just have to specify which instance of QEMU user-mode
they want to use with the option -q:

proot -R /mnt/armslack-12.2/ -q qemu-arm

$ cat /etc/motd
Welcome to ARMedSlack Linux 12.2

The parameter of the -q option is actually a whole QEMU user-mode
command, for instance to enable its GDB server on port 1234:

proot -R /mnt/armslack-12.2/ -q "qemu-arm -g 1234" emacs

PRoot allows one to mix transparently the emulated execution of guest
programs and the native execution of host programs in the same
file-system namespace. It’s typically useful to extend the list of
available programs and to speed up build-time significantly. This
mixed-execution feature is enabled by default when using QEMU
user-mode, and the content of the host rootfs is made accessible
through /host-rootfs:

proot -R /mnt/armslack-12.2/ -q qemu-arm

$ file /bin/echo
[...] ELF 32-bit LSB executable, ARM [...]
$ /bin/echo 'Hello world!'
Hello world!

$ file /host-rootfs/bin/echo
[...] ELF 64-bit LSB executable, x86-64 [...]
$ /host-rootfs/bin/echo 'Hello mixed world!'
Hello mixed world!

Since both host and guest programs use the guest rootfs as /,
users may want to deactivate explicitly cross-filesystem support found
in most GNU cross-compilation tools. For example with GCC configured
to cross-compile to the ARM target:

proot -R /mnt/armslack-12.2/ -q qemu-arm

$ export CC=/host-rootfs/opt/cross-tools/arm-linux/bin/gcc
$ export CFLAGS="--sysroot=/" # could be optional indeed
$./configure; make

As with regular files, a host instance of a program can be bound over
its guest instance. Here is an example where the guest binary of
make is overlaid by the host one:

proot -R /mnt/armslack-12.2/ -q qemu-arm -b /usr/bin/make

$ which make
/usr/bin/make
$ make --version # overlaid
GNU Make 3.82
Built for x86_64-slackware-linux-gnu

It’s worth mentioning that even when mixing the native execution of
host programs and the emulated execution of guest programs, they still
believe they are running in a native guest environment. As a
demonstration, here is a partial output of a typical ./configure
script:

checking whether the C compiler is a cross-compiler... no

Downloads

PRoot

The source code for PRoot and CARE are hosted in the same repository on GitHub [https://github.com/proot-me/proot].
Previous PRoot releases were packaged at https://github.com/proot-me/proot-static-build/releases, however, that
repository has since been archived. The latest builds can be found under the job artifacts for the GitLab CI/CD Pipelines [https://gitlab.com/proot/proot/pipelines] for each commit. The following commands can be used to download the latest x86_64 binary for convenience:

curl -LO https://proot.gitlab.io/proot/bin/proot
chmod +x ./proot
proot --version

Rootfs

The following URLs contain rootfs archives that can be freely downloaded.
Note that mknod errors reported by tar when
extracting these archives can be safely ignored since special files
are typically bound (see -R option for details).

	https://download.openvz.org/template/precreated

	https://images.linuxcontainers.org/images

	http://distfiles.gentoo.org/releases

	http://cdimage.ubuntu.com/ubuntu-base

	https://archlinuxarm.org/about/downloads

	https://alpinelinux.org/downloads

Technically such rootfs archive can be created by running the
following command on the expected Linux distribution:

tar --one-file-system --create --gzip --file my_rootfs.tar.gz /

Ecosystem

The following ecosystem has developed around PRoot since it has been
made publicly available.

Projects using PRoot or CARE

	ATOS [http://compilfr.ens-lyon.fr/wp-content/uploads/2013/12/17-Francois_DeFerriere.pdf]:
find automatically C/C++ compiler options that provide best
optimizations.

	CARE [https://proot-me.github.io/care]: archive material used during an execution to make it
reproducible on any Linux system.

	Debian noroot [https://play.google.com/store/apps/details?id=com.cuntubuntu]:
use Debian Linux on Android without root access.

	GNURoot [https://play.google.com/store/apps/details?id=champion.gnuroot]:
use several Linux distros on Android without root access.

	JuNest [http://fsquillace.github.io/junest-site]:
use Arch Linux on any Linux distros without root access.

	OPAM2Debian [https://forge.ocamlcore.org/projects/opam2debian]:
create Debian packages which contains a fully compiled OPAM
installation.

	OpenMOLE [https://www.openmole.org]:
execute programs on distributed computing environments.

	Polysquare Travis Container [https://github.com/polysquare/polysquare-travis-container]:
use several Linux distros on Travis-CI without root access.

	Portable PyPy [https://github.com/squeaky-pl/portable-pypy]:
portable 32 and 64 bit x86 PyPy binaries.

	SIO Workers [http://sioworkers.readthedocs.org/en/latest]:
batch long-term computations with Python.

Third party packages

Binaries from the Downloads section are likely more up-to-date.

	Alpine Linux [https://pkgs.alpinelinux.org/packages?name=proot]

	Arch Linux [https://aur.archlinux.org/packages/proot]

	Debian [https://packages.debian.org/sid/proot]

	Gentoo [http://packages.gentoo.org/package/sys-apps/proot]

	NixOS [https://github.com/NixOS/nixpkgs/tree/master/pkgs/tools/system/proot]

	Termux [https://wiki.termux.com/wiki/PRoot]

	Ubuntu [https://launchpad.net/ubuntu/+source/proot]

	University of Chicago RCC [https://rcc.uchicago.edu/docs/software/modules/proot/midway2/current.html]

	Void Linux [https://github.com/void-linux/void-packages/tree/master/srcpkgs/proot]

Public material about PRoot or CARE

	articles on Rémi’s blog [https://blog.duraffort.fr/tag/proot.html]. Rémi (a.k.a Ivoire)
is one of the PRoot developers.

	presentation “Software engineering tools based on syscall
instrumentation [https://archive.fosdem.org/2014/schedule/event/syscall]” during
FOSDEM 2014.

	presentation “SW testing & Reproducing a LAVA failures locally
using CARE [https://connect.linaro.org/resources/lcu14/lcu14-211-lava-use-cases-sw-testing-reproducing-a-lava-failures-locally-using-care]”
during Linaro Connect USA 2014

	presentation and essay “CARE: the Comprehensive Archiver for
Reproducible Execution [http://c-mind.org/events/trust2014/presentations/trust14_care.pdf]”
(essay [http://dl.acm.org/citation.cfm?doid=2618137.2618138])
during TRUST 2014

	presentation “An Introduction to the CARE tool (dead link)”
during HiPEAC CSW 2013

	presentation and essay “PRoot: a Step Forward for QEMU User-Mode [http://adt.cs.upb.de/quf/quf11/quf2011_13.pdf]” (proceedings [http://adt.cs.upb.de/quf/quf2011_proceedings.pdf]) during
QUF’11

	tutorial “How to install nix in home (on another distribution) [https://nixos.wiki/wiki/Nix_Installation_Guide#PRoot]”

Companies using PRoot or CARE internally

	STMicroelectronics

	Sony

	Ericsson

	Cisco

	Gogo

	Infinite Omicron, LLC.

See Also

chroot(1), mount(8), binfmt_misc, ptrace(2), qemu(1), sb2(1),
bindfs(1), fakeroot(1), fakechroot(1)

Colophon

Visit https://proot-me.github.io for help, bug reports, suggestions, patches, …
Copyright (C) 2023 PRoot Developers, licensed under GPL v2 or later.

 _____ _____ ___
| __ \ __ _____ _____| |_
| __/ / _ \/ _ \ _|
|__| |__|_______/_____/____|

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

